Mathematics

5. Tangents

-----

Tangent parallel to the initial line dydθ=0\dfrac{dy}{d\theta} = 0

Tangent perpendicular to the initial line dxdθ=0\dfrac{dx}{d\theta} = 0

Example

Find the equation of the tangent to the curve r=asin2θr = a\sin 2\theta parallel to the initial line

where 0θπ20 \leq \theta \leq \dfrac{\pi}{2}

Answer

when dydθ=0\dfrac{dy}{d\theta} = 0

rsinθ=yr\sin \theta = y

so

y=asinθsin2θy = a\sin \theta \sin 2\theta

using double angle formula

y=2asin2θcosθ=2a(cosθcos3θ)y = 2a\sin^2 \theta \cos \theta = 2a(\cos \theta - \cos^3 \theta)

differentiate

dydθ=2a(sinθ+3sinθcos2θ)\dfrac{dy}{d\theta} = 2a(-\sin \theta + 3\sin \theta \cos^2 \theta)

pull out sinθ\sin \theta

dydθ=2asinθ(3cos2θ1)\dfrac{dy}{d\theta} = 2a\sin\theta(3\cos^2 \theta - 1)

for dydθ=0\dfrac{dy}{d\theta} = 0 both

sinθ=0,cos2θ=13\sin \theta = 0, \quad \quad \cos^2 \theta = \dfrac{1}{3}

looking at sinθ=0\sin \theta = 0

θ=0,r=0\theta = 0, \quad \quad r = 0

this isn't a solution since r>0r > 0

looking at cos2θ=13\cos^2 \theta = \dfrac{1}{3}

cosθ=13,sinθ=23\cos \theta = \dfrac{1}{\sqrt{3 }}, \quad \quad \sin \theta = \dfrac{\sqrt{2}}{\sqrt{3}}

using double angle formula for r=asin2θr = a \sin 2\theta

r=2asinθcosθr = 2a\sin \theta \cos \theta

subbing in sinθ\sin \theta and cosθ\cos \theta

r=2a2313=2a23r = 2a \cdot \dfrac{\sqrt{2}}{\sqrt{3}} \cdot \dfrac{1}{\sqrt{3}} = \dfrac{2a \sqrt{2}}{3}

if you plot this you will get a circle which intersects r=asinθr = a\sin \theta at the tangent points

now since y=rsinθy = r\sin \theta

y=2a2323=4a33y = \dfrac{2a \sqrt{2}}{3} \cdot \dfrac{\sqrt{2}}{\sqrt{3}} = \dfrac{4a}{3\sqrt{3}}

now to get the equation of the tangent we sub yy into r=ysinθr = \dfrac{y}{sin\theta}

r=4a33cosecθr = \dfrac{4a}{3\sqrt{3}} \cosec \theta

on a graph this looks like

Tangents Image

 

 

On this page