Mathematics

2. Polar to Cartesian

-----

Polar To Cartesian

Conversions

x=rcos(θ),y=rsin(θ)x = r\cos(\theta), \quad \quad y = r\sin(\theta) r=x2+y2,θ=arctanyxr = \sqrt{x^2 + y^2}, \quad \quad \theta = \arctan{\dfrac{y}{x}}

Example 1

Convert the polar coordinate (2,π3)(2, \dfrac{\pi}{3}) in their cartesian form

Answer

x=2cos(π3)=1  y=2sin(π3)=3  (1,3)x = 2\cos(\dfrac{\pi}{3}) = 1 \\ \; \\ y = 2\sin(\dfrac{\pi}{3}) = \sqrt{3} \\ \; \\ \boxed{(1, \sqrt{3})}

 

Example 2

Convert the cartesian coordinate (1,3)(1, -\sqrt{3}) into its polar form

Answer

θ=arctan(31)=π3  r=12+(3)2=2  (2,π3)\theta = \arctan(-\dfrac{\sqrt{3}}{1}) = -\dfrac{\pi}{3} \\ \; \\ r = \sqrt{1^2 + (-\sqrt{3})^2} = 2 \\ \; \\ \boxed{(2, -\dfrac{\pi}{3})}