Mathematics

3. Plotting Polar Coordinates

-----

Example

Plot the graph of r=2cos(θ)r = 2\cos(\theta)

Answer (Table)

Lets write the table for this using increments of π6\dfrac{\pi}{6}

θ\theta00π6\dfrac{\pi}{6}π3\dfrac{\pi}{3}π2\dfrac{\pi}{2}2π3\dfrac{2\pi}{3}5π6\dfrac{5\pi}{6}π\pi7π6\dfrac{7\pi}{6}4π3\dfrac{4\pi}{3}3π2\dfrac{3\pi}{2}5π3\dfrac{5\pi}{3}11π6\dfrac{11\pi}{6}2π2\pi
r=2cosθr=2\cos\theta223\sqrt{3}11001-13-\sqrt{3}2-23-\sqrt{3}1-100113\sqrt{3}22

plotting this we can see we get a circle

Plotting Image

Answer (Mathematical)

r=2cos(θ)r = 2\cos(\theta)

multiple both sides by rr

r2=2rcos(θ)r^2 = 2r\cos(\theta)

sub in r2=x2+y2r^2 = \sqrt{x^2 + y^2}

x2+y2=2xx^2 + y^2 = 2x

rearrange

x22x+y2=0x^2 - 2x + y^2 = 0

simplify

(x1)21+y2=0(x - 1)^2 - 1 + y^2 = 0

which comes to

(x1)2+y2=1(x - 1)^2 + y^2 = 1

hence r=2cos(θ)r = 2\cos(\theta) is a circle with radius 11