Mathematics
Level 1/Limits

8. Geometric Pinching

-----

Proving that

limx0sin(x)x=1\lim_{x \to 0} \dfrac{\sin(x)}{x} = 1
Geometric Pinching

where circular arc APAP is centered about OO with radius 11 and AOQ=x\angle{AOQ} = x, 0<x<π20 < x < \dfrac{\pi}{2}

we know that

OA=1OA = 1

so

tan(x)=QA1,QA=tan(x)\tan(x) = \dfrac{QA}{1}, \quad QA = \tan(x)

calculating area ΔOAP\Delta OAP

area=12absin(x)=12(1)(1)sin(x)=12sin(x)  ΔOAP=12sin(x)\text{area} = \dfrac{1}{2}ab\sin(x) = \dfrac{1}{2}(1)(1)\sin(x) = \dfrac{1}{2}\sin(x) \\ \; \\ \Delta \text{OAP} = \dfrac{1}{2}\sin(x)

calculating area sector OAPOAP

area=12r2x=12x  OAP=12x\text{area} = \dfrac{1}{2}r^2x = \dfrac{1}{2}x \\ \; \\ \text{OAP} = \dfrac{1}{2}x

calculating area ΔOAQ\Delta OAQ

area=12bh=12(1)(tan(x))=12tan(x)  ΔOAQ=12tan(x)\text{area} = \dfrac{1}{2}bh = \dfrac{1}{2}(1)(\tan(x)) = \dfrac{1}{2}\tan(x) \\ \; \\ \Delta\text{OAQ} = \dfrac{1}{2}\tan(x)

since ΔOAP<OAP<ΔOAQ\Delta OAP < OAP < \Delta OAQ

12sin(x)<12x<12tan(x)  sin(x)<x<tan(x)\dfrac{1}{2}\sin(x) < \dfrac{1}{2}x < \dfrac{1}{2}\tan(x) \\ \; \\ \sin(x) < x < \tan(x)

divide all parts by sin(x)\sin(x)

1<xsin(x)<1cos(x)1 < \dfrac{x}{\sin(x)} < \dfrac{1}{\cos(x)}

take the reciprical of all parts

1>sin(x)x>cos(x),0<x<π21 > \dfrac{\sin(x)}{x} > \cos(x), \quad 0 < x < \dfrac{\pi}{2}

since

limx0cos(x)=1\lim_{x \to 0} \cos(x) = 1

this now follows the Pinching Theorem and therefore

limx0sin(x)x=1\boxed{\lim_{x \to 0} \dfrac{\sin(x)}{x} = 1}