Mathematics
Level 1/Limits

6. Polynomial

-----

How to take the limit with one polynomial over another when the limit looks like it will be 00\dfrac{0}{0}

Example

lim03x29x327\lim_{0 \to 3} \dfrac{x^2 - 9}{x^3 - 27}

Answer

Factorise

x29=(x+3)(x3)x^2 - 9 = (x + 3)(x - 3) x327=(x3)(x2+3x+9)x^3 - 27 = (x - 3)(x^2 + 3x + 9)

since x3x \neq 3

x29x327=x3x2+3x+9\dfrac{x^2 - 9}{x^3 - 27} = \dfrac{x - 3}{x^2 + 3x + 9}

therefore

limx3x3x2+3x+9=3+39+9+9=29\lim_{x \to 3} \dfrac{x - 3}{x^2 + 3x + 9} = \dfrac{3 + 3}{9 + 9 + 9} = \boxed{\dfrac{2}{9}}

 

 

On this page