Level 1/Limits6. Polynomial-----How to take the limit with one polynomial over another when the limit looks like it will be 00\dfrac{0}{0}00 Example lim0→3x2−9x3−27\lim_{0 \to 3} \dfrac{x^2 - 9}{x^3 - 27}0→3limx3−27x2−9 Answer Factorise x2−9=(x+3)(x−3)x^2 - 9 = (x + 3)(x - 3)x2−9=(x+3)(x−3) x3−27=(x−3)(x2+3x+9)x^3 - 27 = (x - 3)(x^2 + 3x + 9)x3−27=(x−3)(x2+3x+9) since x≠3x \neq 3x=3 x2−9x3−27=x−3x2+3x+9\dfrac{x^2 - 9}{x^3 - 27} = \dfrac{x - 3}{x^2 + 3x + 9}x3−27x2−9=x2+3x+9x−3 therefore limx→3x−3x2+3x+9=3+39+9+9=29\lim_{x \to 3} \dfrac{x - 3}{x^2 + 3x + 9} = \dfrac{3 + 3}{9 + 9 + 9} = \boxed{\dfrac{2}{9}}x→3limx2+3x+9x−3=9+9+93+3=92 5. Case 3 - Limit to Infinity-----7. Pinching Theorem-----